Skip to content

Releases: scipy/scipy

SciPy 1.14.0rc1

30 May 03:23
v1.14.0rc1
Compare
Choose a tag to compare
SciPy 1.14.0rc1 Pre-release
Pre-release

SciPy 1.14.0 Release Notes

Note: SciPy 1.14.0 is not released yet!

SciPy 1.14.0 is the culmination of 3 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd and check for DeprecationWarning s).
Our development attention will now shift to bug-fix releases on the
1.14.x branch, and on adding new features on the main branch.

This release requires Python 3.10+ and NumPy 1.23.5 or greater.

For running on PyPy, PyPy3 6.0+ is required.

Highlights of this release

  • SciPy now supports the new Accelerate library introduced in macOS 13.3, and
    has wheels built against Accelerate for macOS >=14 resulting in significant
    performance improvements for many linear algebra operations.
  • A new method, cobyqa, has been added to scipy.optimize.minimize - this
    is an interface for COBYQA (Constrained Optimization BY Quadratic
    Approximations), a derivative-free optimization solver, designed to
    supersede COBYLA, developed by the Department of Applied Mathematics, The
    Hong Kong Polytechnic University.
  • scipy.sparse.linalg.spsolve_triangular is now more than an order of
    magnitude faster in many cases.

New features

scipy.fft improvements

  • A new function, scipy.fft.prev_fast_len, has been added. This function
    finds the largest composite of FFT radices that is less than the target
    length. It is useful for discarding a minimal number of samples before FFT.

scipy.io improvements

  • wavfile now supports reading and writing of wav files in the RF64
    format, allowing files greater than 4 GB in size to be handled.

scipy.constants improvements

  • Experimental support for the array API standard has been added.

scipy.interpolate improvements

  • scipy.interpolate.Akima1DInterpolator now supports extrapolation via the
    extrapolate argument.

scipy.optimize improvements

  • scipy.optimize.HessianUpdateStrategy now also accepts square arrays for
    init_scale.
  • A new method, cobyqa, has been added to scipy.optimize.minimize - this
    is an interface for COBYQA (Constrained Optimization BY Quadratic
    Approximations), a derivative-free optimization solver, designed to
    supersede COBYLA, developed by the Department of Applied Mathematics, The
    Hong Kong Polytechnic University.
  • There are some performance improvements in
    scipy.optimize.differential_evolution.
  • scipy.optimize.approx_fprime now has linear space complexity.

scipy.signal improvements

  • scipy.signal.minimum_phase has a new argument half, allowing the
    provision of a filter of the same length as the linear-phase FIR filter
    coefficients and with the same magnitude spectrum.

scipy.sparse improvements

  • A special case has been added to handle multiplying a dia_array by a
    scalar, which avoids a potentially costly conversion to CSR format.
  • scipy.sparse.csgraph.yen has been added, allowing usage of Yen's K-Shortest
    Paths algorithm on a directed on undirected graph.
  • Addition between DIA-format sparse arrays and matrices is now faster.
  • scipy.sparse.linalg.spsolve_triangular is now more than an order of
    magnitude faster in many cases.

scipy.spatial improvements

  • Rotation supports an alternative "scalar-first" convention of quaternion
    component ordering. It is available via the keyword argument scalar_first
    of from_quat and as_quat methods.
  • Some minor performance improvements for inverting of Rotation objects.

scipy.special improvements

  • Added scipy.special.log_wright_bessel, for calculation of the logarithm of
    Wright's Bessel function.
  • The relative error in scipy.special.hyp2f1 calculations has improved
    substantially.
  • Improved behavior of boxcox, inv_boxcox, boxcox1p, and
    inv_boxcox1p by preventing premature overflow.

scipy.stats improvements

  • A new function scipy.stats.power can be used for simulating the power
    of a hypothesis test with respect to a specified alternative.
  • The Irwin-Hall (AKA Uniform Sum) distribution has been added as
    scipy.stats.irwinhall.
  • Exact p-value calculations of scipy.stats.mannwhitneyu are much faster
    and use less memory.
  • scipy.stats.pearsonr now accepts n-D arrays and computes the statistic
    along a specified axis.
  • scipy.stats.kstat, scipy.stats.kstatvar, and scipy.stats.bartlett
    are faster at performing calculations along an axis of a large n-D array.

Array API Standard Support

Experimental support for array libraries other than NumPy has been added to
existing sub-packages in recent versions of SciPy. Please consider testing
these features by setting an environment variable SCIPY_ARRAY_API=1 and
providing PyTorch, JAX, or CuPy arrays as array arguments.

As of 1.14.0, there is support for

  • scipy.cluster

  • scipy.fft

  • scipy.constants

  • scipy.special: (select functions)

    • scipy.special.log_ndtr
    • scipy.special.ndtr
    • scipy.special.ndtri
    • scipy.special.erf
    • scipy.special.erfc
    • scipy.special.i0
    • scipy.special.i0e
    • scipy.special.i1
    • scipy.special.i1e
    • scipy.special.gammaln
    • scipy.special.gammainc
    • scipy.special.gammaincc
    • scipy.special.logit
    • scipy.special.expit
    • scipy.special.entr
    • scipy.special.rel_entr
    • scipy.special.xlogy
    • scipy.special.chdtrc
  • scipy.stats: (select functions)

    • scipy.stats.moment
    • scipy.stats.skew
    • scipy.stats.kurtosis
    • scipy.stats.kstat
    • scipy.stats.kstatvar
    • scipy.stats.circmean
    • scipy.stats.circvar
    • scipy.stats.circstd
    • scipy.stats.entropy
    • scipy.stats.variation
    • scipy.stats.sem
    • scipy.stats.ttest_1samp
    • scipy.stats.pearsonr
    • scipy.stats.chisquare
    • scipy.stats.skewtest
    • scipy.stats.kurtosistest
    • scipy.stats.normaltest
    • scipy.stats.jarque_bera
    • scipy.stats.bartlett
    • scipy.stats.power_divergence
    • scipy.stats.monte_carlo_test

Deprecated features

  • scipy.stats.gstd, scipy.stats.chisquare, and
    scipy.stats.power_divergence have deprecated support for masked array
    input.
  • scipy.stats.linregress has deprecated support for specifying both samples
    in one argument; x and y are to be provided as separate arguments.
  • The conjtransp method for scipy.sparse.dok_array and
    scipy.sparse.dok_matrix has been deprecated and will be removed in SciPy
    1.16.0.
  • The option quadrature="trapz" in scipy.integrate.quad_vec has been
    deprecated in favour of quadrature="trapezoid" and will be removed in
    SciPy 1.16.0.
  • scipy.special.comb has deprecated support for use of exact=True in
    conjunction with non-integral N and/or k.

Backwards incompatible changes

  • Many scipy.stats functions now produce a standardized warning message when
    an input sample is too small (e.g. zero size). Previously, these functions
    may have raised an error, emitted one or more less informative warnings, or
    emitted no warnings. In most cases, returned results are unchanged; in almost
    all cases the correct result is NaN.

Expired deprecations

There is an ongoing effort to follow through on long-standing deprecations.
The following previously deprecated features are affected:

  • Several previously deprecated methods for sparse arrays were removed:
    asfptype, getrow, getcol, get_shape, getmaxprint,
    set_shape, getnnz, and getformat. Additionally, the .A and
    .H attributes were removed.
  • scipy.integrate.{simps,trapz,cumtrapz} have been removed in favour of
    simpson, trapezoid, and cumulative_trapezoid.
  • The tol argument of scipy.sparse.linalg.{bcg,bicstab,cg,cgs,gcrotmk, mres,lgmres,minres,qmr,tfqmr} has been removed in favour of rtol.
    Furthermore, the default value of atol for these functions has changed
    to 0.0.
  • The restrt argument of scipy.sparse.linalg.gmres has been removed in
    favour of restart.
  • The initial_lexsort argument of scipy.stats.kendalltau has been
    removed.
  • The cond and rcond arguments of scipy.linalg.pinv have been
    removed.
  • The even argument of scipy.integrate.simpson has been removed.
  • The turbo and eigvals arguments from scipy.linalg.{eigh,eigvalsh}
    have been removed.
  • The legacy argument of scipy.special.comb has been removed.
  • The hz/nyq argument of signal.{firls, firwin, firwin2, remez} has
    been removed.
  • Objects that weren't part of the public interface but were accessible through
    deprecated submodules have been removed.
  • float128, float96, and object arrays now raise an error in
    scipy.signal.medfilt and scipy.signal.order_filter.
  • scipy.interpolate.interp2d has been replaced by an empty stub (to be
    removed completely in the future).
  • Coinciding with changes to function signatures (e.g. remov...
Read more

SciPy 1.13.1

23 May 04:06
v1.13.1
Compare
Choose a tag to compare

SciPy 1.13.1 Release Notes

SciPy 1.13.1 is a bug-fix release with no new features
compared to 1.13.0. The version of OpenBLAS shipped with
the PyPI binaries has been increased to 0.3.27.

Authors

  • Name (commits)
  • h-vetinari (1)
  • Jake Bowhay (2)
  • Evgeni Burovski (6)
  • Sean Cheah (2)
  • Lucas Colley (2)
  • DWesl (2)
  • Ralf Gommers (7)
  • Ben Greiner (1) +
  • Matt Haberland (2)
  • Gregory R. Lee (1)
  • Philip Loche (1) +
  • Sijo Valayakkad Manikandan (1) +
  • Matti Picus (1)
  • Tyler Reddy (62)
  • Atsushi Sakai (1)
  • Daniel Schmitz (2)
  • Dan Schult (3)
  • Scott Shambaugh (2)
  • Edgar Andrés Margffoy Tuay (1)

A total of 19 people contributed to this release.
People with a "+" by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

SciPy 1.13.0

02 Apr 21:56
v1.13.0
Compare
Choose a tag to compare

SciPy 1.13.0 Release Notes

SciPy 1.13.0 is the culmination of 3 months of hard work. This
out-of-band release aims to support NumPy 2.0.0, and is backwards
compatible to NumPy 1.22.4. The version of OpenBLAS used to build
the PyPI wheels has been increased to 0.3.26.dev.

This release requires Python 3.9+ and NumPy 1.22.4 or greater.

For running on PyPy, PyPy3 6.0+ is required.

Highlights of this release

  • Support for NumPy 2.0.0.
  • Interactive examples have been added to the documentation, allowing users
    to run the examples locally on embedded Jupyterlite notebooks in their
    browser.
  • Preliminary 1D array support for the COO and DOK sparse formats.
  • Several scipy.stats functions have gained support for additional
    axis, nan_policy, and keepdims arguments. scipy.stats also
    has several performance and accuracy improvements.

New features

scipy.integrate improvements

  • The terminal attribute of scipy.integrate.solve_ivp events
    callables now additionally accepts integer values to specify a number
    of occurrences required for termination, rather than the previous restriction
    of only accepting a bool value to terminate on the first registered
    event.

scipy.io improvements

  • scipy.io.wavfile.write has improved dtype input validation.

scipy.interpolate improvements

  • The Modified Akima Interpolation has been added to
    interpolate.Akima1DInterpolator, available via the new method
    argument.
  • New method BSpline.insert_knot inserts a knot into a BSpline instance.
    This routine is similar to the module-level scipy.interpolate.insert
    function, and works with the BSpline objects instead of tck tuples.
  • RegularGridInterpolator gained the functionality to compute derivatives
    in place. For instance, RegularGridInterolator((x, y), values, method="cubic")(xi, nu=(1, 1)) evaluates the mixed second derivative,
    :math:\partial^2 / \partial x \partial y at xi.
  • Performance characteristics of tensor-product spline methods of
    RegularGridInterpolator have been changed: evaluations should be
    significantly faster, while construction might be slower. If you experience
    issues with construction times, you may need to experiment with optional
    keyword arguments solver and solver_args. Previous behavior (fast
    construction, slow evaluations) can be obtained via "*_legacy" methods:
    method="cubic_legacy" is exactly equivalent to method="cubic" in
    previous releases. See gh-19633 for details.

scipy.signal improvements

  • Many filter design functions now have improved input validation for the
    sampling frequency (fs).

scipy.sparse improvements

  • coo_array now supports 1D shapes, and has additional 1D support for
    min, max, argmin, and argmax. The DOK format now has
    preliminary 1D support as well, though only supports simple integer indices
    at the time of writing.
  • Experimental support has been added for pydata/sparse array inputs to
    scipy.sparse.csgraph.
  • dok_array and dok_matrix now have proper implementations of
    fromkeys.
  • csr and csc formats now have improved setdiag performance.

scipy.spatial improvements

  • voronoi_plot_2d now draws Voronoi edges to infinity more clearly
    when the aspect ratio is skewed.

scipy.special improvements

  • All Fortran code, namely, AMOS, specfun, and cdflib libraries
    that the majority of special functions depend on, is ported to Cython/C.
  • The function factorialk now also supports faster, approximate
    calculation using exact=False.

scipy.stats improvements

  • scipy.stats.rankdata and scipy.stats.wilcoxon have been vectorized,
    improving their performance and the performance of hypothesis tests that
    depend on them.
  • stats.mannwhitneyu should now be faster due to a vectorized statistic
    calculation, improved caching, improved exploitation of symmetry, and a
    memory reduction. PermutationMethod support was also added.
  • scipy.stats.mood now has nan_policy and keepdims support.
  • scipy.stats.brunnermunzel now has axis and keepdims support.
  • scipy.stats.friedmanchisquare, scipy.stats.shapiro,
    scipy.stats.normaltest, scipy.stats.skewtest,
    scipy.stats.kurtosistest, scipy.stats.f_oneway,
    scipy.stats.alexandergovern, scipy.stats.combine_pvalues, and
    scipy.stats.kstest have gained axis, nan_policy and
    keepdims support.
  • scipy.stats.boxcox_normmax has gained a ymax parameter to allow user
    specification of the maximum value of the transformed data.
  • scipy.stats.vonmises pdf method has been extended to support
    kappa=0. The fit method is also more performant due to the use of
    non-trivial bounds to solve for kappa.
  • High order moment calculations for scipy.stats.powerlaw are now more
    accurate.
  • The fit methods of scipy.stats.gamma (with method='mm') and
    scipy.stats.loglaplace are faster and more reliable.
  • scipy.stats.goodness_of_fit now supports the use of a custom statistic
    provided by the user.
  • scipy.stats.wilcoxon now supports PermutationMethod, enabling
    calculation of accurate p-values in the presence of ties and zeros.
  • scipy.stats.monte_carlo_test now has improved robustness in the face of
    numerical noise.
  • scipy.stats.wasserstein_distance_nd was introduced to compute the
    Wasserstein-1 distance between two N-D discrete distributions.

Deprecated features

  • Complex dtypes in PchipInterpolator and Akima1DInterpolator have
    been deprecated and will raise an error in SciPy 1.15.0. If you are trying
    to use the real components of the passed array, use np.real on y.
  • Non-integer values of n together with exact=True are deprecated for
    scipy.special.factorial.

Expired Deprecations

There is an ongoing effort to follow through on long-standing deprecations.
The following previously deprecated features are affected:

  • scipy.signal.{lsim2,impulse2,step2} have been removed in favour of
    scipy.signal.{lsim,impulse,step}.
  • Window functions can no longer be imported from the scipy.signal namespace and
    instead should be accessed through either scipy.signal.windows or
    scipy.signal.get_window.
  • scipy.sparse no longer supports multi-Ellipsis indexing
  • scipy.signal.{bspline,quadratic,cubic} have been removed in favour of alternatives
    in scipy.interpolate.
  • scipy.linalg.tri{,u,l} have been removed in favour of numpy.tri{,u,l}.
  • Non-integer arrays in scipy.special.factorial with exact=True now raise an
    error.
  • Functions from NumPy's main namespace which were exposed in SciPy's main
    namespace, such as numpy.histogram exposed by scipy.histogram, have
    been removed from SciPy's main namespace. Please use the functions directly
    from numpy. This was originally performed for SciPy 1.12.0 however was missed from
    the release notes so is included here for completeness.

Backwards incompatible changes

Other changes

  • The second argument of scipy.stats.moment has been renamed to order
    while maintaining backward compatibility.

Authors

  • Name (commits)
  • h-vetinari (50)
  • acceptacross (1) +
  • Petteri Aimonen (1) +
  • Francis Allanah (2) +
  • Jonas Kock am Brink (1) +
  • anupriyakkumari (12) +
  • Aman Atman (2) +
  • Aaditya Bansal (1) +
  • Christoph Baumgarten (2)
  • Sebastian Berg (4)
  • Nicolas Bloyet (2) +
  • Matt Borland (1)
  • Jonas Bosse (1) +
  • Jake Bowhay (25)
  • Matthew Brett (1)
  • Dietrich Brunn (7)
  • Evgeni Burovski (65)
  • Matthias Bussonnier (4)
  • Tim Butters (1) +
  • Cale (1) +
  • CJ Carey (5)
  • Thomas A Caswell (1)
  • Sean Cheah (44) +
  • Lucas Colley (97)
  • com3dian (1)
  • Gianluca Detommaso (1) +
  • Thomas Duvernay (1)
  • DWesl (2)
  • f380cedric (1) +
  • fancidev (13) +
  • Daniel Garcia (1) +
  • Lukas Geiger (3)
  • Ralf Gommers (147)
  • Matt Haberland (81)
  • Tessa van der Heiden (2) +
  • Shawn Hsu (1) +
  • inky (3) +
  • Jannes Münchmeyer (2) +
  • Aditya Vidyadhar Kamath (2) +
  • Agriya Khetarpal (1) +
  • Andrew Landau (1) +
  • Eric Larson (7)
  • Zhen-Qi Liu (1) +
  • Christian Lorentzen (2)
  • Adam Lugowski (4)
  • m-maggi (6) +
  • Chethin Manage (1) +
  • Ben Mares (1)
  • Chris Markiewicz (1) +
  • Mateusz Sokół (3)
  • Daniel McCloy (1) +
  • Melissa Weber Mendonça (6)
  • Josue Melka (1)
  • Michał Górny (4)
  • Juan Montesinos (1) +
  • Juan F. Montesinos (1) +
  • Takumasa Nakamura (1)
  • Andrew Nelson (27)
  • Praveer Nidamaluri (1)
  • Yagiz Olmez (5) +
  • Dimitri Papadopoulos Orfanos (1)
  • Drew Parsons (1) +
  • Tirth Patel (7)
  • Pearu Peterson (1)
  • Matti Picus (3)
  • Rambaud Pierrick (1) +
  • Ilhan Polat (30)
  • Quentin Barthélemy (1)
  • Tyler Reddy (117)
  • Pamphile Roy (10)
  • Atsushi Sakai (8)
  • Daniel Schmitz (10)
  • Dan Schult (17)
  • Eli Schwartz (4)
  • Stefanie Senger (1) +
  • Scott Shambaugh (2)
  • Kevin Sheppard (2)
  • sidsrinivasan (4) +
  • Samuel St-Jean (1)
  • Albert Steppi (31)
  • Adam J. Stewart (4)
  • Kai Striega (3)
  • Ruikang Sun (1) +
  • Mike Taves (1)
  • Nicolas Tessore (3)
  • Benedict T Thekkel (1) +
  • Will Tirone (4)
  • Jacob Vanderplas (2)
  • Christian Veenhuis (1)
  • Isaac Virshup (2)
  • Ben Wallace (1) +
  • Xuefeng Xu (3)
  • Xiao Yuan (5)
  • Irwin Zaid (8)
  • Elmar Zander (1) +
  • Mathias Zechmeister (1) +

A total of 96 p...

Read more

SciPy 1.13.0rc1

19 Mar 18:53
v1.13.0rc1
Compare
Choose a tag to compare
SciPy 1.13.0rc1 Pre-release
Pre-release

SciPy 1.13.0 Release Notes

Note: SciPy 1.13.0 is not released yet!

SciPy 1.13.0 is the culmination of 3 months of hard work. This
out-of-band release aims to support NumPy 2.0.0, and is backwards
compatible to NumPy 1.22.4. The version of OpenBLAS used to build
the PyPI wheels has been increased to 0.3.26.

This release requires Python 3.9+ and NumPy 1.22.4 or greater.

For running on PyPy, PyPy3 6.0+ is required.

Highlights of this release

  • Support for NumPy 2.0.0.
  • Interactive examples have been added to the documentation, allowing users
    to run the examples locally on embedded Jupyterlite notebooks in their
    browser.
  • Preliminary 1D array support for the COO and DOK sparse formats.
  • Several scipy.stats functions have gained support for additional
    axis, nan_policy, and keepdims arguments. scipy.stats also
    has several performance and accuracy improvements.

New features

scipy.integrate improvements

  • The terminal attribute of scipy.integrate.solve_ivp events
    callables now additionally accepts integer values to specify a number
    of occurrences required for termination, rather than the previous restriction
    of only accepting a bool value to terminate on the first registered
    event.

scipy.io improvements

  • scipy.io.wavfile.write has improved dtype input validation.

scipy.interpolate improvements

  • The Modified Akima Interpolation has been added to
    interpolate.Akima1DInterpolator, available via the new method
    argument.
  • RegularGridInterpolator gained the functionality to compute derivatives
    in place. For instance, RegularGridInterolator((x, y), values, method="cubic")(xi, nu=(1, 1)) evaluates the mixed second derivative,
    :math:\partial^2 / \partial x \partial y at xi.
  • Performance characteristics of tensor-product spline methods of
    RegularGridInterpolator have been changed: evaluations should be
    significantly faster, while construction might be slower. If you experience
    issues with construction times, you may need to experiment with optional
    keyword arguments solver and solver_args. Previous behavior (fast
    construction, slow evaluations) can be obtained via "*_legacy" methods:
    method="cubic_legacy" is exactly equivalent to method="cubic" in
    previous releases. See gh-19633 for details.

scipy.signal improvements

  • Many filter design functions now have improved input validation for the
    sampling frequency (fs).

scipy.sparse improvements

  • coo_array now supports 1D shapes, and has additional 1D support for
    min, max, argmin, and argmax. The DOK format now has
    preliminary 1D support as well, though only supports simple integer indices
    at the time of writing.
  • Experimental support has been added for pydata/sparse array inputs to
    scipy.sparse.csgraph.
  • dok_array and dok_matrix now have proper implementations of
    fromkeys.
  • csr and csc formats now have improved setdiag performance.

scipy.spatial improvements

  • voronoi_plot_2d now draws Voronoi edges to infinity more clearly
    when the aspect ratio is skewed.

scipy.special improvements

  • All Fortran code, namely, AMOS, specfun, and cdflib libraries
    that the majority of special functions depend on, is ported to Cython/C.
  • The function factorialk now also supports faster, approximate
    calculation using exact=False.

scipy.stats improvements

  • scipy.stats.rankdata and scipy.stats.wilcoxon have been vectorized,
    improving their performance and the performance of hypothesis tests that
    depend on them.
  • stats.mannwhitneyu should now be faster due to a vectorized statistic
    calculation, improved caching, improved exploitation of symmetry, and a
    memory reduction. PermutationMethod support was also added.
  • scipy.stats.mood now has nan_policy and keepdims support.
  • scipy.stats.brunnermunzel now has axis and keepdims support.
  • scipy.stats.friedmanchisquare, scipy.stats.shapiro,
    scipy.stats.normaltest, scipy.stats.skewtest,
    scipy.stats.kurtosistest, scipy.stats.f_oneway,
    scipy.stats.alexandergovern, scipy.stats.combine_pvalues, and
    scipy.stats.kstest have gained axis, nan_policy and
    keepdims support.
  • scipy.stats.boxcox_normmax has gained a ymax parameter to allow user
    specification of the maximum value of the transformed data.
  • scipy.stats.vonmises pdf method has been extended to support
    kappa=0. The fit method is also more performant due to the use of
    non-trivial bounds to solve for kappa.
  • High order moment calculations for scipy.stats.powerlaw are now more
    accurate.
  • The fit methods of scipy.stats.gamma (with method='mm') and
    scipy.stats.loglaplace are faster and more reliable.
  • scipy.stats.goodness_of_fit now supports the use of a custom statistic
    provided by the user.
  • scipy.stats.wilcoxon now supports PermutationMethod, enabling
    calculation of accurate p-values in the presence of ties and zeros.
  • scipy.stats.monte_carlo_test now has improved robustness in the face of
    numerical noise.
  • scipy.stats.wasserstein_distance_nd was introduced to compute the
    Wasserstein-1 distance between two N-D discrete distributions.

Deprecated features

  • Complex dtypes in PchipInterpolator and Akima1DInterpolator have
    been deprecated and will raise an error in SciPy 1.15.0. If you are trying
    to use the real components of the passed array, use np.real on y.

Backwards incompatible changes

Other changes

  • The second argument of scipy.stats.moment has been renamed to order
    while maintaining backward compatibility.

Authors

  • Name (commits)
  • h-vetinari (50)
  • acceptacross (1) +
  • Petteri Aimonen (1) +
  • Francis Allanah (2) +
  • Jonas Kock am Brink (1) +
  • anupriyakkumari (12) +
  • Aman Atman (2) +
  • Aaditya Bansal (1) +
  • Christoph Baumgarten (2)
  • Sebastian Berg (4)
  • Nicolas Bloyet (2) +
  • Matt Borland (1)
  • Jonas Bosse (1) +
  • Jake Bowhay (25)
  • Matthew Brett (1)
  • Dietrich Brunn (7)
  • Evgeni Burovski (48)
  • Matthias Bussonnier (4)
  • Cale (1) +
  • CJ Carey (4)
  • Thomas A Caswell (1)
  • Sean Cheah (44) +
  • Lucas Colley (97)
  • com3dian (1)
  • Gianluca Detommaso (1) +
  • Thomas Duvernay (1)
  • DWesl (2)
  • f380cedric (1) +
  • fancidev (13) +
  • Daniel Garcia (1) +
  • Lukas Geiger (3)
  • Ralf Gommers (139)
  • Matt Haberland (79)
  • Tessa van der Heiden (2) +
  • inky (3) +
  • Jannes Münchmeyer (2) +
  • Aditya Vidyadhar Kamath (2) +
  • Agriya Khetarpal (1) +
  • Andrew Landau (1) +
  • Eric Larson (7)
  • Zhen-Qi Liu (1) +
  • Adam Lugowski (4)
  • m-maggi (6) +
  • Chethin Manage (1) +
  • Ben Mares (1)
  • Chris Markiewicz (1) +
  • Mateusz Sokół (3)
  • Daniel McCloy (1) +
  • Melissa Weber Mendonça (6)
  • Josue Melka (1)
  • Michał Górny (4)
  • Juan Montesinos (1) +
  • Juan F. Montesinos (1) +
  • Takumasa Nakamura (1)
  • Andrew Nelson (26)
  • Praveer Nidamaluri (1)
  • Yagiz Olmez (5) +
  • Dimitri Papadopoulos Orfanos (1)
  • Drew Parsons (1) +
  • Tirth Patel (7)
  • Matti Picus (3)
  • Rambaud Pierrick (1) +
  • Ilhan Polat (30)
  • Quentin Barthélemy (1)
  • Tyler Reddy (81)
  • Pamphile Roy (10)
  • Atsushi Sakai (4)
  • Daniel Schmitz (10)
  • Dan Schult (16)
  • Eli Schwartz (4)
  • Stefanie Senger (1) +
  • Scott Shambaugh (2)
  • Kevin Sheppard (2)
  • sidsrinivasan (4) +
  • Samuel St-Jean (1)
  • Albert Steppi (30)
  • Adam J. Stewart (4)
  • Kai Striega (3)
  • Ruikang Sun (1) +
  • Mike Taves (1)
  • Nicolas Tessore (3)
  • Benedict T Thekkel (1) +
  • Will Tirone (4)
  • Jacob Vanderplas (2)
  • Christian Veenhuis (1)
  • Isaac Virshup (2)
  • Ben Wallace (1) +
  • Xuefeng Xu (3)
  • Xiao Yuan (5)
  • Irwin Zaid (6)
  • Mathias Zechmeister (1) +

A total of 91 people contributed to this release.
People with a "+" by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

SciPy 1.12.0

20 Jan 22:00
v1.12.0
Compare
Choose a tag to compare

SciPy 1.12.0 Release Notes

SciPy 1.12.0 is the culmination of 6 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd and check for DeprecationWarning s).
Our development attention will now shift to bug-fix releases on the
1.12.x branch, and on adding new features on the main branch.

This release requires Python 3.9+ and NumPy 1.22.4 or greater.

For running on PyPy, PyPy3 6.0+ is required.

Highlights of this release

  • Experimental support for the array API standard has been added to part of
    scipy.special, and to all of scipy.fft and scipy.cluster. There are
    likely to be bugs and early feedback for usage with CuPy arrays, PyTorch
    tensors, and other array API compatible libraries is appreciated. Use the
    SCIPY_ARRAY_API environment variable for testing.
  • A new class, ShortTimeFFT, provides a more versatile implementation of the
    short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
    spectrogram. It utilizes an improved algorithm for calculating the ISTFT.
  • Several new constructors have been added for sparse arrays, and many operations
    now additionally support sparse arrays, further facilitating the migration
    from sparse matrices.
  • A large portion of the scipy.stats API now has improved support for handling
    NaN values, masked arrays, and more fine-grained shape-handling. The
    accuracy and performance of a number of stats methods have been improved,
    and a number of new statistical tests and distributions have been added.

New features

scipy.cluster improvements

  • Experimental support added for the array API standard; PyTorch tensors,
    CuPy arrays and array API compatible array libraries are now accepted
    (GPU support is limited to functions with pure Python implementations).
    CPU arrays which can be converted to and from NumPy are supported
    module-wide and returned arrays will match the input type.
    This behaviour is enabled by setting the SCIPY_ARRAY_API environment
    variable before importing scipy. This experimental support is still
    under development and likely to contain bugs - testing is very welcome.

scipy.fft improvements

  • Experimental support added for the array API standard; functions which are
    part of the fft array API standard extension module, as well as the
    Fast Hankel Transforms and the basic FFTs which are not in the extension
    module, now accept PyTorch tensors, CuPy arrays and array API compatible
    array libraries. CPU arrays which can be converted to and from NumPy arrays
    are supported module-wide and returned arrays will match the input type.
    This behaviour is enabled by setting the SCIPY_ARRAY_API environment
    variable before importing scipy. This experimental support is still under
    development and likely to contain bugs - testing is very welcome.

scipy.integrate improvements

  • Added scipy.integrate.cumulative_simpson for cumulative quadrature
    from sampled data using Simpson's 1/3 rule.

scipy.interpolate improvements

  • New class NdBSpline represents tensor-product splines in N dimensions.
    This class only knows how to evaluate a tensor product given coefficients
    and knot vectors. This way it generalizes BSpline for 1D data to N-D, and
    parallels NdPPoly (which represents N-D tensor product polynomials).
    Evaluations exploit the localized nature of b-splines.
  • NearestNDInterpolator.__call__ accepts **query_options, which are
    passed through to the KDTree.query call to find nearest neighbors. This
    allows, for instance, to limit the neighbor search distance and parallelize
    the query using the workers keyword.
  • BarycentricInterpolator now allows computing the derivatives.
  • It is now possible to change interpolation values in an existing
    CloughTocher2DInterpolator instance, while also saving the barycentric
    coordinates of interpolation points.

scipy.linalg improvements

  • Access to new low-level LAPACK functions is provided via dtgsyl and
    stgsyl.

scipy.optimize improvements

  • scipy.optimize.isotonic_regression has been added to allow nonparametric isotonic
    regression.
  • scipy.optimize.nnls is rewritten in Python and now implements the so-called
    fnnls or fast nnls, making it more efficient for high-dimensional problems.
  • The result object of scipy.optimize.root and scipy.optimize.root_scalar
    now reports the method used.
  • The callback method of scipy.optimize.differential_evolution can now be
    passed more detailed information via the intermediate_results keyword
    parameter. Also, the evolution strategy now accepts a callable for
    additional customization. The performance of differential_evolution has
    also been improved.
  • scipy.optimize.minimize method Newton-CG now supports functions that
    return sparse Hessian matrices/arrays for the hess parameter and is slightly
    more efficient.
  • scipy.optimize.minimize method BFGS now accepts an initial estimate for the
    inverse of the Hessian, which allows for more efficient workflows in some
    circumstances. The new parameter is hess_inv0.
  • scipy.optimize.minimize methods CG, Newton-CG, and BFGS now accept
    parameters c1 and c2, allowing specification of the Armijo and curvature rule
    parameters, respectively.
  • scipy.optimize.curve_fit performance has improved due to more efficient memoization
    of the callable function.

scipy.signal improvements

  • freqz, freqz_zpk, and group_delay are now more accurate
    when fs has a default value.
  • The new class ShortTimeFFT provides a more versatile implementation of the
    short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
    spectrogram. It utilizes an improved algorithm for calculating the ISTFT based on
    dual windows and provides more fine-grained control of the parametrization especially
    in regard to scaling and phase-shift. Functionality was implemented to ease
    working with signal and STFT chunks. A section has been added to the "SciPy User Guide"
    providing algorithmic details. The functions stft, istft and spectrogram
    have been marked as legacy.

scipy.sparse improvements

  • sparse.linalg iterative solvers sparse.linalg.cg,
    sparse.linalg.cgs, sparse.linalg.bicg, sparse.linalg.bicgstab,
    sparse.linalg.gmres, and sparse.linalg.qmr are rewritten in Python.
  • Updated vendored SuperLU version to 6.0.1, along with a few additional
    fixes.
  • Sparse arrays have gained additional constructors: eye_array,
    random_array, block_array, and identity. kron and kronsum
    have been adjusted to additionally support operation on sparse arrays.
  • Sparse matrices now support a transpose with axes=(1, 0), to mirror
    the .T method.
  • LaplacianNd now allows selection of the largest subset of eigenvalues,
    and additionally now supports retrieval of the corresponding eigenvectors.
    The performance of LaplacianNd has also been improved.
  • The performance of dok_matrix and dok_array has been improved,
    and their inheritance behavior should be more robust.
  • hstack, vstack, and block_diag now work with sparse arrays, and
    preserve the input sparse type.
  • A new function, scipy.sparse.linalg.matrix_power, has been added, allowing
    for exponentiation of sparse arrays.

scipy.spatial improvements

  • Two new methods were implemented for spatial.transform.Rotation:
    __pow__ to raise a rotation to integer or fractional power and
    approx_equal to check if two rotations are approximately equal.
  • The method Rotation.align_vectors was extended to solve a constrained
    alignment problem where two vectors are required to be aligned precisely.
    Also when given a single pair of vectors, the algorithm now returns the
    rotation with minimal magnitude, which can be considered as a minor
    backward incompatible change.
  • A new representation for spatial.transform.Rotation called Davenport
    angles is available through from_davenport and as_davenport methods.
  • Performance improvements have been added to distance.hamming and
    distance.correlation.
  • Improved performance of SphericalVoronoi sort_vertices_of_regions
    and two dimensional area calculations.

scipy.special improvements

  • Added scipy.special.stirling2 for computation of Stirling numbers of the
    second kind. Both exact calculation and an asymptotic approximation
    (the default) are supported via exact=True and exact=False (the
    default) respectively.
  • Added scipy.special.betaincc for computation of the complementary
    incomplete Beta function and scipy.special.betainccinv for computation of
    its inverse.
  • Improved precision of scipy.special.betainc and scipy.special.betaincinv.
  • Experimental support added for alternative backends: functions
    scipy.special.log_ndtr, scipy.special.ndtr, scipy.special.ndtri,
    scipy.special.erf, `scipy.speci...
Read more

SciPy 1.12.0rc2

12 Jan 22:28
v1.12.0rc2
Compare
Choose a tag to compare
SciPy 1.12.0rc2 Pre-release
Pre-release

SciPy 1.12.0 Release Notes

Note: SciPy 1.12.0 is not released yet!

SciPy 1.12.0 is the culmination of 6 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd and check for DeprecationWarning s).
Our development attention will now shift to bug-fix releases on the
1.12.x branch, and on adding new features on the main branch.

This release requires Python 3.9+ and NumPy 1.22.4 or greater.

For running on PyPy, PyPy3 6.0+ is required.

Highlights of this release

  • Experimental support for the array API standard has been added to part of
    scipy.special, and to all of scipy.fft and scipy.cluster. There are
    likely to be bugs and early feedback for usage with CuPy arrays, PyTorch
    tensors, and other array API compatible libraries is appreciated. Use the
    SCIPY_ARRAY_API environment variable for testing.
  • A new class, ShortTimeFFT, provides a more versatile implementation of the
    short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
    spectrogram. It utilizes an improved algorithm for calculating the ISTFT.
  • Several new constructors have been added for sparse arrays, and many operations
    now additionally support sparse arrays, further facilitating the migration
    from sparse matrices.
  • A large portion of the scipy.stats API now has improved support for handling
    NaN values, masked arrays, and more fine-grained shape-handling. The
    accuracy and performance of a number of stats methods have been improved,
    and a number of new statistical tests and distributions have been added.

New features

scipy.cluster improvements

  • Experimental support added for the array API standard; PyTorch tensors,
    CuPy arrays and array API compatible array libraries are now accepted
    (GPU support is limited to functions with pure Python implementations).
    CPU arrays which can be converted to and from NumPy are supported
    module-wide and returned arrays will match the input type.
    This behaviour is enabled by setting the SCIPY_ARRAY_API environment
    variable before importing scipy. This experimental support is still
    under development and likely to contain bugs - testing is very welcome.

scipy.fft improvements

  • Experimental support added for the array API standard; functions which are
    part of the fft array API standard extension module, as well as the
    Fast Hankel Transforms and the basic FFTs which are not in the extension
    module, now accept PyTorch tensors, CuPy arrays and array API compatible
    array libraries. CPU arrays which can be converted to and from NumPy arrays
    are supported module-wide and returned arrays will match the input type.
    This behaviour is enabled by setting the SCIPY_ARRAY_API environment
    variable before importing scipy. This experimental support is still under
    development and likely to contain bugs - testing is very welcome.

scipy.integrate improvements

  • Added scipy.integrate.cumulative_simpson for cumulative quadrature
    from sampled data using Simpson's 1/3 rule.

scipy.interpolate improvements

  • New class NdBSpline represents tensor-product splines in N dimensions.
    This class only knows how to evaluate a tensor product given coefficients
    and knot vectors. This way it generalizes BSpline for 1D data to N-D, and
    parallels NdPPoly (which represents N-D tensor product polynomials).
    Evaluations exploit the localized nature of b-splines.
  • NearestNDInterpolator.__call__ accepts **query_options, which are
    passed through to the KDTree.query call to find nearest neighbors. This
    allows, for instance, to limit the neighbor search distance and parallelize
    the query using the workers keyword.
  • BarycentricInterpolator now allows computing the derivatives.
  • It is now possible to change interpolation values in an existing
    CloughTocher2DInterpolator instance, while also saving the barycentric
    coordinates of interpolation points.

scipy.linalg improvements

  • Access to new low-level LAPACK functions is provided via dtgsyl and
    stgsyl.

scipy.ndimage improvements

scipy.optimize improvements

  • scipy.optimize.nnls is rewritten in Python and now implements the so-called
    fnnls or fast nnls.
  • The result object of scipy.optimize.root and scipy.optimize.root_scalar
    now reports the method used.
  • The callback method of scipy.optimize.differential_evolution can now be
    passed more detailed information via the intermediate_results keyword
    parameter. Also, the evolution strategy now accepts a callable for
    additional customization. The performance of differential_evolution has
    also been improved.
  • minimize method Newton-CG has been made slightly more efficient.
  • minimize method BFGS now accepts an initial estimate for the inverse
    of the Hessian, which allows for more efficient workflows in some
    circumstances. The new parameter is hess_inv0.
  • minimize methods CG, Newton-CG, and BFGS now accept parameters
    c1 and c2, allowing specification of the Armijo and curvature rule
    parameters, respectively.
  • curve_fit performance has improved due to more efficient memoization
    of the callable function.
  • isotonic_regression has been added to allow nonparametric isotonic
    regression.

scipy.signal improvements

  • freqz, freqz_zpk, and group_delay are now more accurate
    when fs has a default value.
  • The new class ShortTimeFFT provides a more versatile implementation of the
    short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
    spectrogram. It utilizes an improved algorithm for calculating the ISTFT based on
    dual windows and provides more fine-grained control of the parametrization especially
    in regard to scaling and phase-shift. Functionality was implemented to ease
    working with signal and STFT chunks. A section has been added to the "SciPy User Guide"
    providing algorithmic details. The functions stft, istft and spectrogram
    have been marked as legacy.

scipy.sparse improvements

  • sparse.linalg iterative solvers sparse.linalg.cg,
    sparse.linalg.cgs, sparse.linalg.bicg, sparse.linalg.bicgstab,
    sparse.linalg.gmres, and sparse.linalg.qmr are rewritten in Python.
  • Updated vendored SuperLU version to 6.0.1, along with a few additional
    fixes.
  • Sparse arrays have gained additional constructors: eye_array,
    random_array, block_array, and identity. kron and kronsum
    have been adjusted to additionally support operation on sparse arrays.
  • Sparse matrices now support a transpose with axes=(1, 0), to mirror
    the .T method.
  • LaplacianNd now allows selection of the largest subset of eigenvalues,
    and additionally now supports retrieval of the corresponding eigenvectors.
    The performance of LaplacianNd has also been improved.
  • The performance of dok_matrix and dok_array has been improved,
    and their inheritance behavior should be more robust.
  • hstack, vstack, and block_diag now work with sparse arrays, and
    preserve the input sparse type.
  • A new function, scipy.sparse.linalg.matrix_power, has been added, allowing
    for exponentiation of sparse arrays.

scipy.spatial improvements

  • Two new methods were implemented for spatial.transform.Rotation:
    __pow__ to raise a rotation to integer or fractional power and
    approx_equal to check if two rotations are approximately equal.
  • The method Rotation.align_vectors was extended to solve a constrained
    alignment problem where two vectors are required to be aligned precisely.
    Also when given a single pair of vectors, the algorithm now returns the
    rotation with minimal magnitude, which can be considered as a minor
    backward incompatible change.
  • A new representation for spatial.transform.Rotation called Davenport
    angles is available through from_davenport and as_davenport methods.
  • Performance improvements have been added to distance.hamming and
    distance.correlation.
  • Improved performance of SphericalVoronoi sort_vertices_of_regions
    and two dimensional area calculations.

scipy.special improvements

  • Added scipy.special.stirling2 for computation of Stirling numbers of the
    second kind. Both exact calculation and an asymptotic approximation
    (the default) are supported via exact=True and exact=False (the
    default) respectively.
  • Added scipy.special.betaincc for computation of the complementary incomplete Beta function and scipy.special.betainccinv for computation of its inverse.
  • Improved precision of scipy.special.betainc and scipy.special.betaincinv
  • Experimental support added for alternative backends: functions
    scipy.special.log_ndtr, scipy.special.ndtr, scipy.special.ndtri,
    scipy.special.erf, scipy.special.erfc, scipy.special.i0,
    scipy.special.i0e, scipy.special.i1, scipy.special.i1e,
    `scipy.special.g...
Read more

SciPy 1.12.0rc1

20 Dec 17:19
v1.12.0rc1
Compare
Choose a tag to compare
SciPy 1.12.0rc1 Pre-release
Pre-release

SciPy 1.12.0 Release Notes

Note: SciPy 1.12.0 is not released yet!

SciPy 1.12.0 is the culmination of 6 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd and check for DeprecationWarning s).
Our development attention will now shift to bug-fix releases on the
1.12.x branch, and on adding new features on the main branch.

This release requires Python 3.9+ and NumPy 1.22.4 or greater.

For running on PyPy, PyPy3 6.0+ is required.

Highlights of this release

  • Experimental support for the array API standard has been added to part of
    scipy.special, and to all of scipy.fft and scipy.cluster. There are
    likely to be bugs and early feedback for usage with CuPy arrays, PyTorch
    tensors, and other array API compatible libraries is appreciated. Use the
    SCIPY_ARRAY_API environment variable for testing.
  • A new class, ShortTimeFFT, provides a more versatile implementation of the
    short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
    spectrogram. It utilizes an improved algorithm for calculating the ISTFT.
  • Several new constructors have been added for sparse arrays, and many operations
    now additionally support sparse arrays, further facilitating the migration
    from sparse matrices.
  • A large portion of the scipy.stats API now has improved support for handling
    NaN values, masked arrays, and more fine-grained shape-handling. The
    accuracy and performance of a number of stats methods have been improved,
    and a number of new statistical tests and distributions have been added.

New features

scipy.cluster improvements

  • Experimental support added for the array API standard; PyTorch tensors,
    CuPy arrays and array API compatible array libraries are now accepted
    (GPU support is limited to functions with pure Python implementations).
    CPU arrays which can be converted to and from NumPy are supported
    module-wide and returned arrays will match the input type.
    This behaviour is enabled by setting the SCIPY_ARRAY_API environment
    variable before importing scipy. This experimental support is still
    under development and likely to contain bugs - testing is very welcome.

scipy.fft improvements

  • Experimental support added for the array API standard; functions which are
    part of the fft array API standard extension module, as well as the
    Fast Hankel Transforms and the basic FFTs which are not in the extension
    module, now accept PyTorch tensors, CuPy arrays and array API compatible
    array libraries. CPU arrays which can be converted to and from NumPy arrays
    are supported module-wide and returned arrays will match the input type.
    This behaviour is enabled by setting the SCIPY_ARRAY_API environment
    variable before importing scipy. This experimental support is still under
    development and likely to contain bugs - testing is very welcome.

scipy.integrate improvements

  • Added scipy.integrate.cumulative_simpson for cumulative quadrature
    from sampled data using Simpson's 1/3 rule.

scipy.interpolate improvements

  • New class NdBSpline represents tensor-product splines in N dimensions.
    This class only knows how to evaluate a tensor product given coefficients
    and knot vectors. This way it generalizes BSpline for 1D data to N-D, and
    parallels NdPPoly (which represents N-D tensor product polynomials).
    Evaluations exploit the localized nature of b-splines.
  • NearestNDInterpolator.__call__ accepts **query_options, which are
    passed through to the KDTree.query call to find nearest neighbors. This
    allows, for instance, to limit the neighbor search distance and parallelize
    the query using the workers keyword.
  • BarycentricInterpolator now allows computing the derivatives.
  • It is now possible to change interpolation values in an existing
    CloughTocher2DInterpolator instance, while also saving the barycentric
    coordinates of interpolation points.

scipy.linalg improvements

  • Access to new low-level LAPACK functions is provided via dtgsyl and
    stgsyl.

scipy.ndimage improvements

scipy.optimize improvements

  • scipy.optimize.nnls is rewritten in Python and now implements the so-called
    fnnls or fast nnls.
  • The result object of scipy.optimize.root and scipy.optimize.root_scalar
    now reports the method used.
  • The callback method of scipy.optimize.differential_evolution can now be
    passed more detailed information via the intermediate_results keyword
    parameter. Also, the evolution strategy now accepts a callable for
    additional customization. The performance of differential_evolution has
    also been improved.
  • minimize method Newton-CG has been made slightly more efficient.
  • minimize method BFGS now accepts an initial estimate for the inverse
    of the Hessian, which allows for more efficient workflows in some
    circumstances. The new parameter is hess_inv0.
  • minimize methods CG, Newton-CG, and BFGS now accept parameters
    c1 and c2, allowing specification of the Armijo and curvature rule
    parameters, respectively.
  • curve_fit performance has improved due to more efficient memoization
    of the callable function.
  • isotonic_regression has been added to allow nonparametric isotonic
    regression.

scipy.signal improvements

  • freqz, freqz_zpk, and group_delay are now more accurate
    when fs has a default value.
  • The new class ShortTimeFFT provides a more versatile implementation of the
    short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
    spectrogram. It utilizes an improved algorithm for calculating the ISTFT based on
    dual windows and provides more fine-grained control of the parametrization especially
    in regard to scaling and phase-shift. Functionality was implemented to ease
    working with signal and STFT chunks. A section has been added to the "SciPy User Guide"
    providing algorithmic details. The functions stft, istft and spectrogram
    have been marked as legacy.

scipy.sparse improvements

  • sparse.linalg iterative solvers sparse.linalg.cg,
    sparse.linalg.cgs, sparse.linalg.bicg, sparse.linalg.bicgstab,
    sparse.linalg.gmres, and sparse.linalg.qmr are rewritten in Python.
  • Updated vendored SuperLU version to 6.0.1, along with a few additional
    fixes.
  • Sparse arrays have gained additional constructors: eye_array,
    random_array, block_array, and identity. kron and kronsum
    have been adjusted to additionally support operation on sparse arrays.
  • Sparse matrices now support a transpose with axes=(1, 0), to mirror
    the .T method.
  • LaplacianNd now allows selection of the largest subset of eigenvalues,
    and additionally now supports retrieval of the corresponding eigenvectors.
    The performance of LaplacianNd has also been improved.
  • The performance of dok_matrix and dok_array has been improved,
    and their inheritance behavior should be more robust.
  • hstack, vstack, and block_diag now work with sparse arrays, and
    preserve the input sparse type.
  • A new function, scipy.sparse.linalg.matrix_power, has been added, allowing
    for exponentiation of sparse arrays.

scipy.spatial improvements

  • Two new methods were implemented for spatial.transform.Rotation:
    __pow__ to raise a rotation to integer or fractional power and
    approx_equal to check if two rotations are approximately equal.
  • The method Rotation.align_vectors was extended to solve a constrained
    alignment problem where two vectors are required to be aligned precisely.
    Also when given a single pair of vectors, the algorithm now returns the
    rotation with minimal magnitude, which can be considered as a minor
    backward incompatible change.
  • A new representation for spatial.transform.Rotation called Davenport
    angles is available through from_davenport and as_davenport methods.
  • Performance improvements have been added to distance.hamming and
    distance.correlation.
  • Improved performance of SphericalVoronoi sort_vertices_of_regions
    and two dimensional area calculations.

scipy.special improvements

  • Added scipy.special.stirling2 for computation of Stirling numbers of the
    second kind. Both exact calculation and an asymptotic approximation
    (the default) are supported via exact=True and exact=False (the
    default) respectively.
  • Added scipy.special.betaincc for computation of the complementary incomplete Beta function and scipy.special.betainccinv for computation of its inverse.
  • Improved precision of scipy.special.betainc and scipy.special.betaincinv
  • Experimental support added for alternative backends: functions
    scipy.special.log_ndtr, scipy.special.ndtr, scipy.special.ndtri,
    scipy.special.erf, scipy.special.erfc, scipy.special.i0,
    scipy.special.i0e, scipy.special.i1, scipy.special.i1e,
    `scipy.special.gammaln...
Read more

SciPy 1.11.4

18 Nov 21:48
v1.11.4
Compare
Choose a tag to compare

SciPy 1.11.4 Release Notes

SciPy 1.11.4 is a bug-fix release with no new features
compared to 1.11.3.

Authors

  • Name (commits)
  • Jake Bowhay (2)
  • Ralf Gommers (4)
  • Julien Jerphanion (2)
  • Nikolay Mayorov (2)
  • Melissa Weber Mendonça (1)
  • Tirth Patel (1)
  • Tyler Reddy (22)
  • Dan Schult (3)
  • Nicolas Vetsch (1) +

A total of 9 people contributed to this release.
People with a "+" by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

SciPy 1.11.3

27 Sep 22:44
v1.11.3
Compare
Choose a tag to compare

SciPy 1.11.3 Release Notes

SciPy 1.11.3 is a bug-fix release with no new features
compared to 1.11.2.

Authors

  • Name (commits)
  • Jake Bowhay (2)
  • CJ Carey (1)
  • Colin Carroll (1) +
  • Anirudh Dagar (2)
  • drestebon (1) +
  • Ralf Gommers (5)
  • Matt Haberland (2)
  • Julien Jerphanion (1)
  • Uwe L. Korn (1) +
  • Ellie Litwack (2)
  • Andrew Nelson (5)
  • Bharat Raghunathan (1)
  • Tyler Reddy (37)
  • Søren Fuglede Jørgensen (2)
  • Hielke Walinga (1) +
  • Warren Weckesser (1)
  • Bernhard M. Wiedemann (1)

A total of 17 people contributed to this release.
People with a "+" by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

SciPy 1.11.2

17 Aug 23:02
v1.11.2
Compare
Choose a tag to compare

SciPy 1.11.2 Release Notes

SciPy 1.11.2 is a bug-fix release with no new features
compared to 1.11.1. Python 3.12 and musllinux wheels
are provided with this release.

Authors

  • Name (commits)
  • Evgeni Burovski (2)
  • CJ Carey (3)
  • Dieter Werthmüller (1)
  • elbarso (1) +
  • Ralf Gommers (2)
  • Matt Haberland (1)
  • jokasimr (1) +
  • Thilo Leitzbach (1) +
  • LemonBoy (1) +
  • Ellie Litwack (2) +
  • Sturla Molden (1)
  • Andrew Nelson (5)
  • Tyler Reddy (39)
  • Daniel Schmitz (6)
  • Dan Schult (2)
  • Albert Steppi (1)
  • Matus Valo (1)
  • Stefan van der Walt (1)

A total of 18 people contributed to this release.
People with a "+" by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.