Skip to content
Permalink

Comparing changes

Choose two branches to see what’s changed or to start a new pull request. If you need to, you can also or learn more about diff comparisons.

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also . Learn more about diff comparisons here.
base repository: kernc/backtesting.py
Failed to load repositories. Confirm that selected base ref is valid, then try again.
Loading
base: 0.5.0
Choose a base ref
...
head repository: kernc/backtesting.py
Failed to load repositories. Confirm that selected head ref is valid, then try again.
Loading
compare: 0.6.0
Choose a head ref

Commits on Jan 21, 2025

  1. MNT: Set package name according to PEP-625

    PyPI complained over email.
    
    https://peps.python.org/pep-0625/
    kernc committed Jan 21, 2025
    Copy the full SHA
    9243738 View commit details
  2. ENH: Add Backtest(spread=), change Backtest(commission=)

    `commission=` is now applied twice as common with brokers.
    `spread=` takes the role `commission=` had previously.
    kernc committed Jan 21, 2025

    Verified

    This commit was created on GitHub.com and signed with GitHub’s verified signature. The key has expired.
    Copy the full SHA
    8fbb902 View commit details
  3. ENH: Show paid 'Commissions [$]' in stats

    kernc committed Jan 21, 2025
    Copy the full SHA
    c0a266c View commit details
  4. BUG: Fix bug in Sharpe ratio with non-zero risk-free rate (#904)

    tani3010 authored Jan 21, 2025
    Copy the full SHA
    126953f View commit details
  5. REF: Reword assertion condition: cash > 0 (#962)

    more readable
    
    Co-authored-by: Juice Man <92176188+ElPettego@users.noreply.github.com>
    sbOogway and sbOogway authored Jan 21, 2025
    Copy the full SHA
    e92763b View commit details
  6. DOC: Add return type annotations for buy and sell methods (#975)

    * ENH: Explicitly import annotations everywhere
    
    Type annotations are now explicitly imported
    from `__future__` to allow forward references
    and postponed evaluation (faster import time).
    See PEP 563 for details.
    
    * ENH: add return type annotations for `buy`/`sell`
    
    The return type annotations are now added for `buy`
    and `sell` methods. The documentation is updated to
    mention that the `Order` is returned. Now it should
    be crystal clear how to cancel a non-executed order.
    
    This should address #957.
    ivaigult authored Jan 21, 2025
    Copy the full SHA
    eefff87 View commit details
  7. BUG: Allow multiple names for vector indicators (#382) (#980)

    * BUG: Allow multiple names for vector indicators (#382)
    
    Previously we only allowed one name per vector
    indicator:
    
        def _my_indicator(open, close):
        	return tuple(
    	    _my_indicator_one(open, close),
    	    _my_indicator_two(open, close),
    	)
    
        self.I(
            _my_indicator,
    	# One name is used to describe two values
            name="My Indicator",
    	self.data.Open,
    	self.data.Close
        )
    
    Now, the user can supply two (or more) names to annotate
    each value individually. The names will be shown in the
    plot legend. The following is now valid:
    
        self.I(
            _my_indicator,
    	# Two names can now be passed
            name=["My Indicator One", "My Indicator Two"],
    	self.data.Open,
    	self.data.Close
        )
    ivaigult authored Jan 21, 2025
    Copy the full SHA
    01551af View commit details

Commits on Jan 22, 2025

  1. ENH: Add columns SL and TP to trade_df stats (#1039)

    * Added TP and SL into stats file.
    
    * Update column order and add test
    aligheshlaghi97 authored Jan 22, 2025
    Copy the full SHA
    a58e899 View commit details
  2. gitignore build folder

    aliencaocao authored and kernc committed Jan 22, 2025
    Copy the full SHA
    78f5167 View commit details
  3. REF: Avoid further pandas resample offset-string deprecations

    Refs 551e7b0
    kernc committed Jan 22, 2025
    Copy the full SHA
    dfcab45 View commit details
  4. ENH: Add entry/exit indicator values to stats['trades'] (#1116)

    * Updated _trades dataframe with 1D Indicator variables for Entry and Exit bars
    
    * Shorter form, vectorized over index
    
    * Remove Strategy.get_indicators_dataframe() public helper method
    
    * Account for multi-dim indicators and/or no trades
    
    ---------
    
    Co-authored-by: kernc <kerncece@gmail.com>
    lachyn21 and kernc authored Jan 22, 2025
    Copy the full SHA
    4b829b7 View commit details
  5. DOC: Annotate lib.random_ohlc_data() as a Generator (#1162)

    * Update lib.py
    
    Replacing pd.DataFrame with Generator[pd.DataFrame, None, None]
    The reason for replacing pd.DataFrame with Generator[pd.DataFrame, None, None] is to better reflect the actual output type of the random_ohlc_data function. Here are the specific reasons and benefits:
    
    Reasons:
    Accuracy of Output Type: The original code declared that the function returns a pd.DataFrame, but in reality, the function is a generator that yields multiple pd.DataFrame objects. Using Generator more accurately describes the function's behavior.
    Clarity of Type Hinting: Using Generator allows the code readers and users to more easily understand that the function returns a generator rather than a single DataFrame. This helps prevent potential misunderstandings and misuse.
    Benefits:
    Performance Improvement: Generators can generate data on-demand rather than generating all data at once, saving memory and improving performance, especially when dealing with large datasets.
    Lazy Evaluation: Generators allow for lazy evaluation, meaning data frames are only generated when needed. This can improve the efficiency and responsiveness of the code.
    Better Code Maintainability: Explicitly using generators makes the intent of the code clearer, enhancing readability and maintainability, making it easier for other developers to understand and maintain the code.
    
    * Import typing.Generator
    gitctrlx authored Jan 22, 2025
    Copy the full SHA
    5a59c4e View commit details
  6. BUG: Pass integers to Bokeh RGB constructor (#1164)

    * roudning error in RGB functionality
    
    * Update backtesting/_plotting.py
    Murat-U-Saglam authored Jan 22, 2025
    Copy the full SHA
    b2cd457 View commit details
  7. DOC: Add "AutoTrader" to alternatives.md (#696)

    This commit adds AutoTrader to the alternatives document with an
    associated description and links to relevant backtesting documentation.
    
    Co-authored-by: Jack McPherson <jack@bluefootresearch.com>
    jmcph4 and Jack McPherson authored Jan 22, 2025
    Copy the full SHA
    023ce7e View commit details
  8. DOC: Add "LiuAlgoTrader" to alternatives.md (#1091)

    * add LiuAlgoTrader to alts
    
    * Update doc/alternatives.md
    makedirectory authored Jan 22, 2025
    Copy the full SHA
    903b578 View commit details
  9. DOC: Add "Nautilus Trader" to alternatives.md (#1175)

    added Nautilus Trader to list of backtesting alternatives (a very good open-source backtester project/platform)
    tmdcpro authored Jan 22, 2025
    Copy the full SHA
    65d1437 View commit details

Commits on Jan 28, 2025

  1. MNT: Add .github/ISSUE_TEMPLATE

    kernc committed Jan 28, 2025
    Copy the full SHA
    d1d26f7 View commit details
  2. DOC: Further warning that indicator lengths can affect results

    Refs: d7eaa45
    
    Fixes #1184
    kernc committed Jan 28, 2025
    Copy the full SHA
    44fcb02 View commit details

Commits on Jan 30, 2025

  1. ENH: Optionally finalize trades at the end of backtest run (#393)

    * ENH: Add the possibility to close trades at end of bt.run (#273 & #343)
    
    * Change parameter name, simplify tests
    * Fix failing test
    
    ---------
    
    Co-authored-by: Bénouare <le.code.43@gmail.com>
    Co-authored-by: benoit <flood@benoit-laviale.fr>
    Co-authored-by: Kernc <kerncece@gmail.com>
    4 people authored Jan 30, 2025
    Copy the full SHA
    ae3d69f View commit details
  2. BUG: Reduce optimization memory footprint (#884)

    * Reduce memory footprint
    
    Memoizing the whole stats made copies of contained `_strategy`,
    which held duplicate references at least to whole data ...
    Now we memoize just the maximization float value.
    diegolovison authored Jan 30, 2025
    Copy the full SHA
    925006f View commit details

Commits on Feb 1, 2025

  1. Copy the full SHA
    01e0a5d View commit details
  2. Copy the full SHA
    5c8a0af View commit details

Commits on Feb 2, 2025

  1. BUG: Change price comparisons from lt/gt to lte/gte, align with Tradi…

    …ngView
    
    Fixes #1157
    aliencaocao authored and kernc committed Feb 2, 2025
    Copy the full SHA
    d4ec0ba View commit details
  2. Copy the full SHA
    a08eb0f View commit details

Commits on Feb 4, 2025

  1. Copy the full SHA
    2b89c4a View commit details
  2. Copy the full SHA
    21907e9 View commit details
  3. Copy the full SHA
    5197b44 View commit details
  4. Copy the full SHA
    fbbb24a View commit details
  5. Copy the full SHA
    420232f View commit details
  6. DOC: Amend CONTRIBUTING and ISSUE_TEMPLATE

    kernc committed Feb 4, 2025
    Copy the full SHA
    f0e12c6 View commit details
  7. Copy the full SHA
    0978284 View commit details
  8. TYP: Fix mypy issue

    kernc committed Feb 4, 2025
    Copy the full SHA
    881ddd0 View commit details
  9. Copy the full SHA
    a3ba8a7 View commit details
  10. BUG: Fix plot not shown in VSCode Jupyter

    Fixes #695
    kernc committed Feb 4, 2025
    Copy the full SHA
    d323fa6 View commit details
  11. Copy the full SHA
    8b88e81 View commit details
  12. Copy the full SHA
    17131a3 View commit details
  13. BUG: Indicator warm-up period shouldn't consider scatter=True indicators

    Fixes `backtesting.lib.SignalStrategy` use.
    Fixes #495
    kernc committed Feb 4, 2025
    Copy the full SHA
    fd0bdb0 View commit details
  14. MNT: Update CHANGELOG for v0.6.0

    kernc committed Feb 4, 2025
    Copy the full SHA
    2b18a06 View commit details
98 changes: 98 additions & 0 deletions .github/ISSUE_TEMPLATE/1-bug.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
name: Bug report
description: File a new bug report. Please use the search
title: "Short title loaded with keywords"
body:
- type: markdown
attributes:
value: |
Thanks for putting in the effort to submit this bug report! Note, the
best bug reports are accompanied with fixing patches / pull-requests. 🙏
- type: checkboxes
attributes:
label: Contributing guidelines
description: |
Please kindly follow this project's
[Contributing Guidelines](https://github.com/kernc/backtesting.py/blob/master/CONTRIBUTING.md).
The guidelines contain short technical notes on how to best contribute to this project.
options:
- label: |
I agree to follow this project's
[Contributing Guidelines](https://github.com/kernc/backtesting.py/blob/master/CONTRIBUTING.md)
which, I understand, contain short technical notes on how to best contribute to this project.
required: true
- type: checkboxes
attributes:
label: Own due diligence
options:
- label: |
I verify my due dilligence—I have went through the **tutorials** and the **API docs** and
have used the **search** on **Issues** and GitHub **Disucussions**, as well all Google,
with all the relevant search keywords.
required: true
- type: textarea
id: expected
validations:
required: true
attributes:
label: Expected behavior
description: You run the code below and expect what to happen?
placeholder: When I run this code ... the program should ...

- type: textarea
id: code
validations:
required: false
attributes:
label: Code sample
description: Code snippet that clearly reproduces the issue
render: python
placeholder: |
from backtesting import Backtest, Strategy
from backtesting.test import GOOG
class Example(Strategy):
...
bt = Backtest(GOOG, Example)
...
- type: textarea
id: actual
validations:
required: true
attributes:
label: Actual behavior
description: What happened unexpectedly when you ran the code above?
placeholder: When I ran the code above ... the program did ...

- type: textarea
id: steps
validations:
required: false
attributes:
label: Additional info, steps to reproduce, full crash traceback, screenshots
description: |
Attach any additional info you think might be helpful and
result in quicker resolution of your bug.
placeholder: |
1. Do ...
2. ...
3. Boom.
4. See attached screenshots where I highlight the relevant parts.
- type: textarea
id: versions
validations:
required: false
attributes:
label: Software versions
description: |
Versions of the relevant software / packages.
value: |
<!-- From `backtesting.__version__`. If git, use commit hash -->
- Backtesting version: 0.?.?
- `bokeh.__version__`:
- OS:
60 changes: 60 additions & 0 deletions .github/ISSUE_TEMPLATE/2-enh.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
name: Enhancement proposal
description: Describe the enhancement you'd like to see
title: "Short title loaded with keywords"
labels: ["enhancement"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to give feedback on this software!
- type: checkboxes
attributes:
label: Contributing guidelines
description: |
Please kindly follow this project's
[Contributing Guidelines](https://github.com/kernc/backtesting.py/blob/master/CONTRIBUTING.md).
The guidelines contain short technical notes on how to best contribute to this project.
options:
- label: |
I agree to follow this project's
[Contributing Guidelines](https://github.com/kernc/backtesting.py/blob/master/CONTRIBUTING.md)
which, I understand, contain short technical notes on how to best contribute to this project.
required: true
- type: checkboxes
attributes:
label: Own due diligence
options:
- label: |
I verify my due dilligence—I have went through the **tutorials** and the **API docs** and
have used the **search** on **Issues** and GitHub **Disucussions**, as well all Google,
with all the relevant search keywords.
required: true
- type: textarea
id: expected
validations:
required: true
attributes:
label: Enhancement description
description: What would you want to see in the software that doesn't appear to be presently included?
placeholder: I absolutely love your software, but I'm missing a way to ...

- type: textarea
id: code
validations:
required: false
attributes:
label: Code sample
description: Code snippet relevant to the new feature
render: python

- type: textarea
id: steps
validations:
required: false
attributes:
label: Additional info, images
description: |
Extra information you think might be helpful or interesting.
11 changes: 11 additions & 0 deletions .github/ISSUE_TEMPLATE/config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
blank_issues_enabled: true
contact_links:
- name: Reference documentation
url: https://kernc.github.io/backtesting.py/doc/backtesting/
about: Please confirm you've checked here first.
- name: FAQ
url: https://github.com/kernc/backtesting.py/issues?q=label%3Aquestion%20
about: Frequently asked questions. Use search with potential keywords.
- name: Discussion forum
url: https://github.com/kernc/backtesting.py/discussions
about: Other discussions. Make sure you've seen this too.
14 changes: 6 additions & 8 deletions .github/issue_template.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,13 @@
### Expected Behavior

...

### Actual Behavior

<!-- In case of a bug, attach full exception traceback. Please
wrap verbatim code/output in Markdown fenced code blocks:
https://bit.ly/3nEvlHP -->
<!--
In case of a bug, attach full exception traceback.
Please wrap verbatim code/output in Markdown fenced code blocks.
-->


### Steps to Reproduce
@@ -25,8 +27,4 @@ python code goes here

### Additional info

<!-- screenshots, code snippets, ... -->

- Backtesting version: 0.?.? <!-- From backtesting.__version__ -->
- `bokeh.__version__`:
- OS:
<!-- screenshots, code snippets, versions ... -->
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -13,6 +13,7 @@ dist/*
htmlcov/*

doc/build/*
build/*

.idea/*
.vscode/
22 changes: 22 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -5,6 +5,28 @@ These were the major changes contributing to each release:

### 0.x.x

### 0.6.0
(2025-02-04)

* Enhancements:
* Add `Backtest(spread=)`; change `Backtest(commission=)` to apply twice per trade
* Show paid "Commissions [$]" key in trade stats
* Allow multiple names for vector indicators (#980)
* Add columns SL and TP to `stats['trades']` (#1039)
* Add entry/exit indicator values to `stats['trades']` (#1116)
* Optionally finalize trades at the end of backtest run (#393)
* Bug fixes, including for some long-standing bugs:
* Fix bug in Sharpe ratio with non-zero risk-free rate (#904)
* Change price comparisons to lte/gte to align with TradingView
* Reduce optimization memory footprint (#884)
* Fix annualized stats with weekly/monthly data
* Fix `AssertionError` on `for o in self.orders: o.cancel()`
* Fix plot not shown in VSCode Jupyter
* Buy&Hold duration now matches trading duration
* Fix `bt.plot(resample=True)` with categorical indicators
* Several other small bug fixes, deprecations and docs updates.


### 0.5.0
(2025-01-21)

35 changes: 26 additions & 9 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
@@ -9,26 +9,40 @@ have been fixed already.

To have your issue dealt with promptly, it's best to construct a
[minimal working example] that exposes the issue in a clear and
reproducible manner. Make sure to understand
[how to report bugs effectively][bugs] and how to
reproducible manner. Review [how to report bugs effectively][bugs]
and, particularly, how to
[craft useful bug reports][bugs2] in Python.

In case of bugs, please submit full tracebacks
In case of bugs, please submit **full** tracebacks.

Wrap verbatim example code/traceback in [fenced code blocks],
and use the preview function!
Remember that GitHub Issues supports [markdown] syntax, so
please **wrap verbatim example code**/traceback in
triple-backtick-[fenced code blocks],
such as:
~~~markdown
```python
def foo():
...
```
~~~
and use the post preview function before posting!

Many thanks from the maintainers!

Note, In most cases, the issues are most readily dealt with when
accompanied by [respective fixes/PRs].

[minimal working example]: https://en.wikipedia.org/wiki/Minimal_working_example
[bugs]: https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
[bugs2]: https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports
[fenced code blocks]: https://www.markdownguide.org/extended-syntax/#fenced-code-blocks
[markdown]: https://www.markdownguide.org/cheat-sheet/
[fenced code blocks]: https://www.markdownguide.org/extended-syntax/#syntax-highlighting
[respective fixes/PRs]: https://github.com/kernc/backtesting.py/blob/master/CONTRIBUTING.md#pull-requests


Installation
------------
To install a developmental version of the project,
To install a _developmental_ version of the project,
first [fork the project]. Then:

git clone git@github.com:YOUR_USERNAME/backtesting.py
@@ -48,14 +62,14 @@ Before submitting a PR, ensure the tests pass:

Also ensure that idiomatic code style is respected by running:

flake8
flake8 backtesting
mypy backtesting


Documentation
-------------
See _doc/README.md_. Besides Jupyter Notebook examples, all documentation
is generated from [pdoc]-compatible docstrings in code.
is generated from [pdoc]-compatible markdown docstrings in code.

[pdoc]: https://pdoc3.github.io/pdoc

@@ -67,5 +81,8 @@ A general recommended reading:
Please use explicit commit messages. See [NumPy's development workflow]
for inspiration.

Please help review [existing PRs] you wish to see included.

[code-review]: https://mtlynch.io/code-review-love/
[NumPy's development workflow]: https://numpy.org/doc/stable/dev/development_workflow.html
[existing PRs]: https://github.com/kernc/backtesting.py/pulls
3 changes: 3 additions & 0 deletions backtesting/__init__.py
Original file line number Diff line number Diff line change
@@ -8,6 +8,9 @@
## Tutorials
The tutorials encompass most framework features, so it's important
and advisable to go through all of them. They are short.
* [Library of Utilities and Composable Base Strategies](../examples/Strategies Library.html)
* [Multiple Time Frames](../examples/Multiple Time Frames.html)
* [**Parameter Heatmap & Optimization**](../examples/Parameter Heatmap &amp; Optimization.html)
75 changes: 49 additions & 26 deletions backtesting/_plotting.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from __future__ import annotations

import os
import re
import sys
@@ -38,13 +40,14 @@
from bokeh.palettes import Category10
from bokeh.transform import factor_cmap

from backtesting._util import _data_period, _as_list, _Indicator
from backtesting._util import _data_period, _as_list, _Indicator, try_

with open(os.path.join(os.path.dirname(__file__), 'autoscale_cb.js'),
encoding='utf-8') as _f:
_AUTOSCALE_JS_CALLBACK = _f.read()

IS_JUPYTER_NOTEBOOK = 'JPY_PARENT_PID' in os.environ
IS_JUPYTER_NOTEBOOK = ('JPY_PARENT_PID' in os.environ or
'inline' in os.environ.get('MPLBACKEND', ''))

if IS_JUPYTER_NOTEBOOK:
warnings.warn('Jupyter Notebook detected. '
@@ -88,7 +91,7 @@ def colorgen():
def lightness(color, lightness=.94):
rgb = np.array([color.r, color.g, color.b]) / 255
h, _, s = rgb_to_hls(*rgb)
rgb = np.array(hls_to_rgb(h, lightness, s)) * 255.
rgb = (np.array(hls_to_rgb(h, lightness, s)) * 255).astype(int)
return RGB(*rgb)


@@ -103,18 +106,18 @@ def _maybe_resample_data(resample_rule, df, indicators, equity_data, trades):
return df, indicators, equity_data, trades

freq_minutes = pd.Series({
"1T": 1,
"5T": 5,
"10T": 10,
"15T": 15,
"30T": 30,
"1H": 60,
"2H": 60*2,
"4H": 60*4,
"8H": 60*8,
"1min": 1,
"5min": 5,
"10min": 10,
"15min": 15,
"30min": 30,
"1h": 60,
"2h": 60*2,
"4h": 60*4,
"8h": 60*8,
"1D": 60*24,
"1W": 60*24*7,
"1M": np.inf,
"1ME": np.inf,
})
timespan = df.index[-1] - df.index[0]
require_minutes = (timespan / _MAX_CANDLES).total_seconds() // 60
@@ -125,8 +128,15 @@ def _maybe_resample_data(resample_rule, df, indicators, equity_data, trades):
from .lib import OHLCV_AGG, TRADES_AGG, _EQUITY_AGG
df = df.resample(freq, label='right').agg(OHLCV_AGG).dropna()

indicators = [_Indicator(i.df.resample(freq, label='right').mean()
.dropna().reindex(df.index).values.T,
def try_mean_first(indicator):
nonlocal freq
resampled = indicator.df.fillna(np.nan).resample(freq, label='right')
try:
return resampled.mean()
except Exception:
return resampled.first()

indicators = [_Indicator(try_mean_first(i).dropna().reindex(df.index).values.T,
**dict(i._opts, name=i.name,
# Replace saved index with the resampled one
index=df.index))
@@ -141,7 +151,7 @@ def _weighted_returns(s, trades=trades):
return ((df['Size'].abs() * df['ReturnPct']) / df['Size'].abs().sum()).sum()

def _group_trades(column):
def f(s, new_index=pd.Index(df.index.view(int)), bars=trades[column]):
def f(s, new_index=pd.Index(df.index.astype(int)), bars=trades[column]):
if s.size:
# Via int64 because on pandas recently broken datetime
mean_time = int(bars.loc[s.index].astype(int).mean())
@@ -537,10 +547,23 @@ def __eq__(self, other):
colors = value._opts['color']
colors = colors and cycle(_as_list(colors)) or (
cycle([next(ohlc_colors)]) if is_overlay else colorgen())
legend_label = LegendStr(value.name)
for j, arr in enumerate(value, 1):

if isinstance(value.name, str):
tooltip_label = value.name
if len(value) == 1:
legend_labels = [LegendStr(value.name)]
else:
legend_labels = [
LegendStr(f"{value.name}[{i}]")
for i in range(len(value))
]
else:
tooltip_label = ", ".join(value.name)
legend_labels = [LegendStr(item) for item in value.name]

for j, arr in enumerate(value):
color = next(colors)
source_name = f'{legend_label}_{i}_{j}'
source_name = f'{legend_labels[j]}_{i}_{j}'
if arr.dtype == bool:
arr = arr.astype(int)
source.add(arr, source_name)
@@ -550,37 +573,37 @@ def __eq__(self, other):
if is_scatter:
fig.circle(
'index', source_name, source=source,
legend_label=legend_label, color=color,
legend_label=legend_labels[j], color=color,
line_color='black', fill_alpha=.8,
radius=BAR_WIDTH / 2 * .9)
else:
fig.line(
'index', source_name, source=source,
legend_label=legend_label, line_color=color,
legend_label=legend_labels[j], line_color=color,
line_width=1.3)
else:
if is_scatter:
r = fig.circle(
'index', source_name, source=source,
legend_label=LegendStr(legend_label), color=color,
legend_label=legend_labels[j], color=color,
radius=BAR_WIDTH / 2 * .6)
else:
r = fig.line(
'index', source_name, source=source,
legend_label=LegendStr(legend_label), line_color=color,
legend_label=legend_labels[j], line_color=color,
line_width=1.3)
# Add dashed centerline just because
mean = float(pd.Series(arr).mean())
mean = try_(lambda: float(pd.Series(arr).mean()), default=np.nan)
if not np.isnan(mean) and (abs(mean) < .1 or
round(abs(mean), 1) == .5 or
round(abs(mean), -1) in (50, 100, 200)):
fig.add_layout(Span(location=float(mean), dimension='width',
line_color='#666666', line_dash='dashed',
line_width=.5))
if is_overlay:
ohlc_tooltips.append((legend_label, NBSP.join(tooltips)))
ohlc_tooltips.append((tooltip_label, NBSP.join(tooltips)))
else:
set_tooltips(fig, [(legend_label, NBSP.join(tooltips))], vline=True, renderers=[r])
set_tooltips(fig, [(tooltip_label, NBSP.join(tooltips))], vline=True, renderers=[r])
# If the sole indicator line on this figure,
# have the legend only contain text without the glyph
if len(value) == 1:
47 changes: 36 additions & 11 deletions backtesting/_stats.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
from typing import TYPE_CHECKING, List, Union
from __future__ import annotations

from typing import TYPE_CHECKING, List, Union, cast

import numpy as np
import pandas as pd

from ._util import _data_period
from ._util import _data_period, _indicator_warmup_nbars

if TYPE_CHECKING:
from .backtesting import Strategy, Trade
@@ -36,7 +38,7 @@ def compute_stats(
trades: Union[List['Trade'], pd.DataFrame],
equity: np.ndarray,
ohlc_data: pd.DataFrame,
strategy_instance: 'Strategy',
strategy_instance: Strategy | None,
risk_free_rate: float = 0,
) -> pd.Series:
assert -1 < risk_free_rate < 1
@@ -53,6 +55,7 @@ def compute_stats(

if isinstance(trades, pd.DataFrame):
trades_df: pd.DataFrame = trades
commissions = None # Not shown
else:
# Came straight from Backtest.run()
trades_df = pd.DataFrame({
@@ -61,13 +64,26 @@ def compute_stats(
'ExitBar': [t.exit_bar for t in trades],
'EntryPrice': [t.entry_price for t in trades],
'ExitPrice': [t.exit_price for t in trades],
'SL': [t.sl for t in trades],
'TP': [t.tp for t in trades],
'PnL': [t.pl for t in trades],
'ReturnPct': [t.pl_pct for t in trades],
'EntryTime': [t.entry_time for t in trades],
'ExitTime': [t.exit_time for t in trades],
'Tag': [t.tag for t in trades],
})
trades_df['Duration'] = trades_df['ExitTime'] - trades_df['EntryTime']
trades_df['Tag'] = [t.tag for t in trades]

# Add indicator values
if len(trades_df) and strategy_instance:
for ind in strategy_instance._indicators:
ind = np.atleast_2d(ind)
for i, values in enumerate(ind): # multi-d indicators
suffix = f'_{i}' if len(ind) > 1 else ''
trades_df[f'Entry_{ind.name}{suffix}'] = values[trades_df['EntryBar'].values]
trades_df[f'Exit_{ind.name}{suffix}'] = values[trades_df['ExitBar'].values]

commissions = sum(t._commissions for t in trades)
del trades

pl = trades_df['PnL']
@@ -92,20 +108,28 @@ def _round_timedelta(value, _period=_data_period(index)):
s.loc['Exposure Time [%]'] = have_position.mean() * 100 # In "n bars" time, not index time
s.loc['Equity Final [$]'] = equity[-1]
s.loc['Equity Peak [$]'] = equity.max()
if commissions:
s.loc['Commissions [$]'] = commissions
s.loc['Return [%]'] = (equity[-1] - equity[0]) / equity[0] * 100
first_trading_bar = _indicator_warmup_nbars(strategy_instance)
c = ohlc_data.Close.values
s.loc['Buy & Hold Return [%]'] = (c[-1] - c[0]) / c[0] * 100 # long-only return
s.loc['Buy & Hold Return [%]'] = (c[-1] - c[first_trading_bar]) / c[first_trading_bar] * 100 # long-only return

gmean_day_return: float = 0
day_returns = np.array(np.nan)
annual_trading_days = np.nan
is_datetime_index = isinstance(index, pd.DatetimeIndex)
if is_datetime_index:
day_returns = equity_df['Equity'].resample('D').last().dropna().pct_change()
freq_days = cast(pd.Timedelta, _data_period(index)).days
have_weekends = index.dayofweek.to_series().between(5, 6).mean() > 2 / 7 * .6
annual_trading_days = (
52 if freq_days == 7 else
12 if freq_days == 31 else
1 if freq_days == 365 else
(365 if have_weekends else 252))
freq = {7: 'W', 31: 'ME', 365: 'YE'}.get(freq_days, 'D')
day_returns = equity_df['Equity'].resample(freq).last().dropna().pct_change()
gmean_day_return = geometric_mean(day_returns)
annual_trading_days = float(
365 if index.dayofweek.to_series().between(5, 6).mean() > 2/7 * .6 else
252)

# Annualized return and risk metrics are computed based on the (mostly correct)
# assumption that the returns are compounded. See: https://dx.doi.org/10.2139/ssrn.3054517
@@ -122,9 +146,10 @@ def _round_timedelta(value, _period=_data_period(index)):

# Our Sharpe mismatches `empyrical.sharpe_ratio()` because they use arithmetic mean return
# and simple standard deviation
s.loc['Sharpe Ratio'] = (s.loc['Return (Ann.) [%]'] - risk_free_rate) / (s.loc['Volatility (Ann.) [%]'] or np.nan) # noqa: E501
s.loc['Sharpe Ratio'] = (s.loc['Return (Ann.) [%]'] - risk_free_rate * 100) / (s.loc['Volatility (Ann.) [%]'] or np.nan) # noqa: E501
# Our Sortino mismatches `empyrical.sortino_ratio()` because they use arithmetic mean return
s.loc['Sortino Ratio'] = (annualized_return - risk_free_rate) / (np.sqrt(np.mean(day_returns.clip(-np.inf, 0)**2)) * np.sqrt(annual_trading_days)) # noqa: E501
with np.errstate(divide='ignore'):
s.loc['Sortino Ratio'] = (annualized_return - risk_free_rate) / (np.sqrt(np.mean(day_returns.clip(-np.inf, 0)**2)) * np.sqrt(annual_trading_days)) # noqa: E501
max_dd = -np.nan_to_num(dd.max())
s.loc['Calmar Ratio'] = annualized_return / (-max_dd or np.nan)
s.loc['Max. Drawdown [%]'] = max_dd * 100
17 changes: 17 additions & 0 deletions backtesting/_util.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from __future__ import annotations

import warnings
from numbers import Number
from typing import Dict, List, Optional, Sequence, Union, cast
@@ -40,6 +42,21 @@ def _data_period(index) -> Union[pd.Timedelta, Number]:
return values.diff().dropna().median()


def _strategy_indicators(strategy):
return {attr: indicator
for attr, indicator in strategy.__dict__.items()
if isinstance(indicator, _Indicator)}.items()


def _indicator_warmup_nbars(strategy):
if strategy is None:
return 0
nbars = max((np.isnan(indicator.astype(float)).argmin(axis=-1).max()
for _, indicator in _strategy_indicators(strategy)
if not indicator._opts['scatter']), default=0)
return nbars


class _Array(np.ndarray):
"""
ndarray extended to supply .name and other arbitrary properties
217 changes: 155 additions & 62 deletions backtesting/backtesting.py

Large diffs are not rendered by default.

6 changes: 4 additions & 2 deletions backtesting/lib.py
Original file line number Diff line number Diff line change
@@ -11,11 +11,13 @@
[issue tracker]: https://github.com/kernc/backtesting.py
"""

from __future__ import annotations

from collections import OrderedDict
from inspect import currentframe
from itertools import compress
from numbers import Number
from typing import Callable, Optional, Sequence, Union
from typing import Callable, Generator, Optional, Sequence, Union

import numpy as np
import pandas as pd
@@ -330,7 +332,7 @@ def wrap_func(resampled, *args, **kwargs):


def random_ohlc_data(example_data: pd.DataFrame, *,
frac=1., random_state: Optional[int] = None) -> pd.DataFrame:
frac=1., random_state: Optional[int] = None) -> Generator[pd.DataFrame, None, None]:
"""
OHLC data generator. The generated OHLC data has basic
[descriptive statistics](https://en.wikipedia.org/wiki/Descriptive_statistics)
3 changes: 3 additions & 0 deletions backtesting/test/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
"""Data and utilities for testing."""

from __future__ import annotations

import pandas as pd


6 changes: 3 additions & 3 deletions backtesting/test/__main__.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
import sys
import unittest

suite = unittest.defaultTestLoader.discover('backtesting.test',
pattern='_test*.py')
unittest.defaultTestLoader.suiteClass = lambda _: suite

if __name__ == '__main__':
result = unittest.TextTestRunner(verbosity=2).run(suite)
sys.exit(not result.wasSuccessful())
unittest.main(verbosity=2)
119 changes: 105 additions & 14 deletions backtesting/test/_test.py
Original file line number Diff line number Diff line change
@@ -218,13 +218,44 @@ def next(self, _FEW_DAYS=pd.Timedelta('3 days')): # noqa: N803
bt = Backtest(GOOG, Assertive)
with self.assertWarns(UserWarning):
stats = bt.run()
self.assertEqual(stats['# Trades'], 145)
self.assertEqual(stats['# Trades'], 131)

def test_broker_params(self):
bt = Backtest(GOOG.iloc[:100], SmaCross,
cash=1000, commission=.01, margin=.1, trade_on_close=True)
cash=1000, spread=.01, margin=.1, trade_on_close=True)
bt.run()

def test_spread_commission(self):
class S(Strategy):
def init(self):
self.done = False

def next(self):
if not self.position:
self.buy()
else:
self.position.close()
self.next = lambda: None # Done

SPREAD = .01
COMMISSION = .01
CASH = 10_000
ORDER_BAR = 2
stats = Backtest(SHORT_DATA, S, cash=CASH, spread=SPREAD, commission=COMMISSION).run()
trade_open_price = SHORT_DATA['Open'].iloc[ORDER_BAR]
self.assertEqual(stats['_trades']['EntryPrice'].iloc[0], trade_open_price * (1 + SPREAD))
self.assertEqual(stats['_equity_curve']['Equity'].iloc[2:4].round(2).tolist(),
[9685.31, 9749.33])

stats = Backtest(SHORT_DATA, S, cash=CASH, commission=(100, COMMISSION)).run()
self.assertEqual(stats['_equity_curve']['Equity'].iloc[2:4].round(2).tolist(),
[9784.50, 9718.69])

commission_func = lambda size, price: size * price * COMMISSION # noqa: E731
stats = Backtest(SHORT_DATA, S, cash=CASH, commission=commission_func).run()
self.assertEqual(stats['_equity_curve']['Equity'].iloc[2:4].round(2).tolist(),
[9781.28, 9846.04])

def test_dont_overwrite_data(self):
df = EURUSD.copy()
bt = Backtest(df, SmaCross)
@@ -251,7 +282,7 @@ def test_compute_drawdown(self):
np.testing.assert_array_equal(peaks, pd.Series([7, 4], index=[3, 5]).reindex(dd.index))

def test_compute_stats(self):
stats = Backtest(GOOG, SmaCross).run()
stats = Backtest(GOOG, SmaCross, finalize_trades=True).run()
expected = pd.Series({
# NOTE: These values are also used on the website!
'# Trades': 66,
@@ -260,7 +291,7 @@ def test_compute_stats(self):
'Avg. Trade Duration': pd.Timedelta('46 days 00:00:00'),
'Avg. Trade [%]': 2.531715975158555,
'Best Trade [%]': 53.59595229490424,
'Buy & Hold Return [%]': 703.4582419772772,
'Buy & Hold Return [%]': 522.0601851851852,
'Calmar Ratio': 0.4414380935608377,
'Duration': pd.Timedelta('3116 days 00:00:00'),
'End': pd.Timestamp('2013-03-01 00:00:00'),
@@ -302,10 +333,15 @@ def almost_equal(a, b):

self.assertEqual(len(stats['_trades']), 66)

indicator_columns = [
f'{entry}_SMA(C,{n})'
for entry in ('Entry', 'Exit')
for n in (SmaCross.fast, SmaCross.slow)]
self.assertSequenceEqual(
sorted(stats['_trades'].columns),
sorted(['Size', 'EntryBar', 'ExitBar', 'EntryPrice', 'ExitPrice',
'PnL', 'ReturnPct', 'EntryTime', 'ExitTime', 'Duration', 'Tag']))
sorted(['Size', 'EntryBar', 'ExitBar', 'EntryPrice', 'ExitPrice', 'SL', 'TP',
'PnL', 'ReturnPct', 'EntryTime', 'ExitTime', 'Duration', 'Tag',
*indicator_columns]))

def test_compute_stats_bordercase(self):

@@ -389,7 +425,7 @@ def next(self):
if self.position and crossover(self.sma2, self.sma1):
self.position.close(portion=.5)

bt = Backtest(GOOG, SmaCross, commission=.002)
bt = Backtest(GOOG, SmaCross, spread=.002)
bt.run()

def test_close_orders_from_last_strategy_iteration(self):
@@ -402,7 +438,8 @@ def next(self):
elif len(self.data) == len(SHORT_DATA):
self.position.close()

self.assertFalse(Backtest(SHORT_DATA, S).run()._trades.empty)
self.assertTrue(Backtest(SHORT_DATA, S, finalize_trades=False).run()._trades.empty)
self.assertFalse(Backtest(SHORT_DATA, S, finalize_trades=True).run()._trades.empty)

def test_check_adjusted_price_when_placing_order(self):
class S(Strategy):
@@ -411,7 +448,7 @@ def init(self): pass
def next(self):
self.buy(tp=self.data.Close * 1.01)

self.assertRaises(ValueError, Backtest(SHORT_DATA, S, commission=.02).run)
self.assertRaises(ValueError, Backtest(SHORT_DATA, S, spread=.02).run)


class TestStrategy(TestCase):
@@ -504,7 +541,7 @@ def test_autoclose_trades_on_finish(self):
def coroutine(self):
yield self.buy()

stats = self._Backtest(coroutine).run()
stats = self._Backtest(coroutine, finalize_trades=True).run()
self.assertEqual(len(stats._trades), 1)

def test_order_tag(self):
@@ -551,7 +588,7 @@ def test_optimize(self):
bt.plot(filename=f, open_browser=False)

def test_method_sambo(self):
bt = Backtest(GOOG.iloc[:100], SmaCross)
bt = Backtest(GOOG.iloc[:100], SmaCross, finalize_trades=True)
res, heatmap, sambo_results = bt.optimize(
fast=range(2, 20), slow=np.arange(2, 20, dtype=object),
constraint=lambda p: p.fast < p.slow,
@@ -730,7 +767,12 @@ def next(self):
time.sleep(1)

def test_resample(self):
bt = Backtest(GOOG, SmaCross)
class S(SmaCross):
def init(self):
self.I(lambda: ['x'] * len(self.data)) # categorical indicator, GH-309
super().init()

bt = Backtest(GOOG, S)
bt.run()
import backtesting._plotting
with _tempfile() as f, \
@@ -740,6 +782,37 @@ def test_resample(self):
# Give browser time to open before tempfile is removed
time.sleep(1)

def test_indicator_name(self):
test_self = self

class S(Strategy):
def init(self):
def _SMA():
return SMA(self.data.Close, 5), SMA(self.data.Close, 10)

test_self.assertRaises(TypeError, self.I, _SMA, name=42)
test_self.assertRaises(ValueError, self.I, _SMA, name=("SMA One", ))
test_self.assertRaises(
ValueError, self.I, _SMA, name=("SMA One", "SMA Two", "SMA Three"))

for overlay in (True, False):
self.I(SMA, self.data.Close, 5, overlay=overlay)
self.I(SMA, self.data.Close, 5, name="My SMA", overlay=overlay)
self.I(SMA, self.data.Close, 5, name=("My SMA", ), overlay=overlay)
self.I(_SMA, overlay=overlay)
self.I(_SMA, name="My SMA", overlay=overlay)
self.I(_SMA, name=("SMA One", "SMA Two"), overlay=overlay)

def next(self):
pass

bt = Backtest(GOOG, S)
bt.run()
with _tempfile() as f:
bt.plot(filename=f,
plot_drawdown=False, plot_equity=False, plot_pl=False, plot_volume=False,
open_browser=False)

def test_indicator_color(self):
class S(Strategy):
def init(self):
@@ -858,7 +931,7 @@ def init(self):
self.data.Close < sma)

stats = Backtest(GOOG, S).run()
self.assertIn(stats['# Trades'], (1181, 1182)) # varies on different archs?
self.assertIn(stats['# Trades'], (1179, 1180)) # varies on different archs?

def test_TrailingStrategy(self):
class S(TrailingStrategy):
@@ -874,7 +947,7 @@ def next(self):
self.buy()

stats = Backtest(GOOG, S).run()
self.assertEqual(stats['# Trades'], 57)
self.assertEqual(stats['# Trades'], 56)


class TestUtil(TestCase):
@@ -967,6 +1040,24 @@ def next(self):
bt = Backtest(df, S, cash=100, trade_on_close=True)
self.assertEqual(bt.run()._trades['ExitPrice'][0], 50)

def test_stats_annualized(self):
stats = Backtest(GOOG.resample('W').agg(OHLCV_AGG), SmaCross).run()
self.assertFalse(np.isnan(stats['Return (Ann.) [%]']))
self.assertEqual(round(stats['Return (Ann.) [%]']), -3)

def test_cancel_orders(self):
class S(Strategy):
def init(self): pass

def next(self):
self.buy(sl=1, tp=1e3)
if self.position:
self.position.close()
for order in self.orders:
order.cancel()

Backtest(SHORT_DATA, S).run()


if __name__ == '__main__':
warnings.filterwarnings('error')
10 changes: 10 additions & 0 deletions doc/alternatives.md
Original file line number Diff line number Diff line change
@@ -10,6 +10,9 @@ If after reviewing the docs and examples perchance you find
[_Backtesting.py_](https://kernc.github.io/backtesting.py) not your cup of tea,
kindly have a look at some similar alternative Python backtesting frameworks:

- [AutoTrader](https://github.com/kieran-mackle/AutoTrader) -
an automated trading framework with an emphasis on cryptocurrency markets
that includes a [robust backtesting API](https://github.com/kieran-mackle/AutoTrader/blob/main/docs/source/tutorials/backtesting.md)
- [bt](http://pmorissette.github.io/bt/) -
a framework based on reusable and flexible blocks of
strategy logic that support multiple instruments and
@@ -54,6 +57,13 @@ kindly have a look at some similar alternative Python backtesting frameworks:
stock picking, backtesting, and unified visualization. Documentation in Chinese.
- [AwesomeQuant](https://github.com/wilsonfreitas/awesome-quant#trading--backtesting) -
A somewhat curated list of libraries, packages, and resources for quants.
- [Nautilus Trader](https://github.com/nautechsystems/nautilus_trader) -
high-performance, production-grade algorithmic trading platform written in Rust/Python,
with event-driven engine to backtest portfolios of automated trading strategies,
and also deploy those same strategies live, with no code changes.
- [LiuAlgoTrader](https://amor71.github.io/LiuAlgoTrader/) -
A scalable, multi-process ML-ready framework for effective algorithmic trading.


#### Obsolete / Unmaintained

2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
@@ -9,7 +9,7 @@
from setuptools import setup, find_packages

setup(
name='Backtesting',
name='backtesting',
description="Backtest trading strategies in Python",
license='AGPL-3.0',
url='https://kernc.github.io/backtesting.py/',